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Korteweg-de Vries-Burgers equation and the Painlev6 property 

W D Halford and M Vlieg-Hulstman 
Department of Mathematics, Massey University, Palmenton North, New Zealand 

Received 16 December 1991 

Abstract. It is shown that the Koneweg.de Vries-Burgers’ equation possesses the PainlevC 
property conditionally. Using an algorithmic approach a travelling wave solution is repro- 
duced. 

1. Introduction 
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u,+2auuX+bu,+cu,,=O (1) 

where a, b, c are constants. This equation drew attention when Johnson [ I ]  used it to 
model nonlinear waves in an elastic tube with dispersion and dissipation. Wijngaarden 
also considered it 121, and exact travelling wave solutions have been found recently 
[3-71. In a previous paper [8] we showed that there is essentially only one known 
exact solution to the KdvB equation. We obtained this travelling wave solution by 
partial use of a PainlevC analysis. 

Here we point out that the KdvB equation possesses the Painlevt property condi- 
tionally. Furthermore, we reproduce the exact solution by an algorithmic procedure 
which exhaustively utilizes information obtained from the coefficients in the Painlev6 
expansion: 

2. PainlevC analysis 

Weiss et al [9] have shown how the integrability of a partial differential equation is 
related to the ‘Painlevt property’ of the equation. This property, which we shall refer 
to as the wc-PainlevC property, can be summarized as follows: The dependent variable 
U is expressed as an infinite series 

(2) 

where a is a negative integer determined by comparing the lowest powers of Q 
corresponding to the nonlinear and linear terms in the differential equation. For the 
KdvB equation (1) we find a = -2. A recurrence relation is obtained for determining 
the coefficients U, and in the case of equation (1) this takes the form 

j = n  

c u , ( j + l ) ( j - 4 ) ( j - 6 ) ~ : =  h ( 4 ,  &, . . . , un, ut,. . . , uj-1) (3) 
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where h is a nonlinear function. Resonances occur at j = -1,4,6 where the uj are 
arbitrary. If the recurrence relations are consistently satisfied at the resonances then 
the differential equation is said to possess the wc-PainlevC property. However, as we 
shall see shortly, the KdvB equation ( 1 )  does not have this property. 

The recurrence relations (3) for the KdvB equation are explicitly 
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j 

m = o  
uj-,,, + ( j - 4 ) ~ ~ - ~ + ,  + 2 a  C uj - , [ (m -2)um+, + ~ m - l . x l  

+ b[( j -3)(j-4)14-,+:+ ( j - 4 ) ( u j - , ~ , + 2 u , - , , ~ ~ ) +  ~j-~,xxl 
+ c[(j-2)(j-3)(j  -4b,+:+ ( j -3 ) ( j  - 4 ) ( 3 ~ , - 1 4 ~ 4 ~ ~  +3~j-I.~+:) 

+ (j  -4) (3~ , -2 ,xbx + 3u,-2,&, + ~ j - 2 4 ~ ~ )  + ~ j - 3 , x s x l  

= 0. (4) 

The first four members give 

66 6c 
5a a j = l  u,=-4,+-4, 

(8) 

(9) 

66 
5 + - 4,,, + C L T X  = 0 

J 
- (left side of (8)) = 0, u4 arbitrary. 
Jx j = 4  

Rather than write out the relations at j = 5 and j = 6, we simply state that there is an 
incompatibility between them, i.e. the j = 6 relation is not expressible in the form of 
a zero identity with u4 and u6 both arbitrary. Thus there is a breakdown in the condition 
for the wc-PainlevC property at the resonance j = 6. 

However, we say that the KdvB equation possesses the Painlev6 property condi- 
tionally in the sense that compatibility at the resonance j = 6  can be achieved for 
particular 4 functions. This is demonstrated most easily by employing the 'reduced 
ansatz' [9] 4 = x - I/#( 1 ) .  There is consistency at j = 6 only if u4 is no longer arbitrary 
but is a specific function of 4. 

It has been known for some time that the KdvB equation is non-integrable in the 
sense that its spectral problem is non-existent; Feudel and Steudel [lo] first pointed 
this out in 1985 by showing that the equation has no prolongation structure. (For a 
general discussion on the relation between integrability and prolongation, see e.g. 
Dodd and Fordy [I l l . )  The PainlevC method we have employed to confirm non- 
integrability has the advantage of being easier to use and also indicates conditional 
integrability. It is to our knowledge the first such treatment of the KdvB equation. 
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3. Solotion to the Kdvn equation 

In [8] we showed how to obtain the Jeffrey and Xu solution [4] to equation (1) by 
putting U, = 0 in equation (6), solving this for 4 and then requiring u2 = 0 in (7) to 
determine the arbitrary functions. We assumed uj = 0 for j 3. 

Here we adopt a slightly different tactic which can be used as an algorithm for 
finding travelling wave solutions. We start by setting U, = 0 for all j z 1, so that a 
solution to the differential equation takes the form 

U = u04-2 (10) 

where uo is given by the first recurrence relation (5). Out of the remaining recurrence 
relations only three survive upon making use of uj = 0 (j a 1). Using (5) we write them 
as 

b&+Sc4m=0 (11) 

4 ~ ~ , + S b 4 ~ ~ , + 7 ~ 4 , ~ , + 1 2 ~ 4 : , = 0  (12) 

&&, + b4&- + c & L =  + b& + 3c$~,&,, = 0. (13) 

Equation (11) implies that a travelling wave solution is possible, and using equations 
(12) and (13) we obtain the solution in the form (lo), where 

4 = e e + A  (14) 

and q, A are arbitrary constants. If A = 0, the trivial solution U =constant is obtained. 
The particular form of solution given by Jeffrey and Xu [4] is recovered when A = 1. 
We note that these two authors and others assumed there was a travelling wave solution 
to the Kdvn equation; our approach shows that there must be such a solution. 

Next we look for two non-zero terms in the series expansion (2), and thereby pick 
up a little more information. That is, we set U, = 0 for j a 2 but insist that U,, # 0 and 
U, ZO. The solution to the differential equation is now of the form 

u = u O ~ - ' + u , 4 - ' .  (16) 

The recurrence relations (4) give U,, and U, as before in ( 5 )  and (6), together with 
three more survivors: 

2 5 ~ 4 ~ 4 , -  b2q5;+30bc&&+ 1O0C2&~,, -7SC2c$ix=0 (17) 

Sb&4,+ S O C ~ , & ~ ,  + 2 S c ~ , & x + 3 ~ 2 4 x 4 x x  +6Obc&4,+ 12Sc2&Amx+30bc+~ 

- s o c 2 ~ x x ~ m x  = 0 (18) 

b ~ ~ , , f S ~ ~ , , + b ~ 4 , + 6 h c ~ , , , + S c ~ ~ , , ~ ,  = O  (19) 

where we have substituted for uo and U, in terms of 4. From (17). (18) and (19) a 
travelling wave solution of the form (16) is obtained with 

+ = e e + A  (20) 

b 6b3 
e =  *-x-- t + 7  5c 12sc2 
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where A and are arbitrary constants. Note that the sign ambiguity on x gives two 
waves, in opposite directions. If A =  1 we obtain the two forms of solution given by 
Jeffrey and Xu [4]. 

If, instead, we commenced by setting uj = O  for j 3 3  and require un, U, and u2 to 
be all non-zero, the series solution to the differential equation is 
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where un, u1 and u2 are given by (5), ( 6 )  and ( 7 ) .  Only three more of the recurrence 
relations (4) survive, which we write in the form 

25c$,$,+ (50acu2 - b2)$:+ (30bc+ 100cz)$,$, -75c2$2  = O  (23) 
2abu2$, + b$, +5c$,, + (10acu2+ b2)& +6bc$ , ,+5~~+, ,  = 0 (24) 

u2, +2au2u2, + bu2xr + cu2xu = 0 ( 2 5 )  

$ = e s + A  (26)  

upon using expressions (5) and ( 6 ) .  A travelling wave solution represented by 

9 =  k x - o t +  ’I (27)  

where A and 7 are arbitrary constants, is obtained from equations (23)-(25) if and 
only if 

2ab 6b’ 
and w = f- U,+- 

b 
5c 5c 125c2’ 

k =  *- 
We note that u2 is an arbitrary (non-zero) constant, as can be shown by substituting 
(22), (26) ,  (27)  and (28)  into the KdvB equation. Choosing A = 1 and u2 = -6b2/25ac 
reproduces the form of solution given by Xiong [ 3 ] ,  McIntosh [ 5 ]  and Samsonov [ 7 ] .  

A further iteration of this method yields nothing because the recurrence relations 
at j = 6 require u3 = 0. Thus we have obtained all the information about travelling wave 
solutions to the KdvB equation that this method will give. 

Finally, we make the observation that if (22) is viewed as part of a Backlund 
transformation, only solutions differing by a constant from a known travelling wave 
solution can be found. That is, for the KdvB equation there appears to be no way of 
obtaining non-trivially new travelling wave solutions from the known one via a 
Backlund transformation. 

Closing remark The method used above can be applied to many PDES. We write out 
the recurrence relations using the PainlevC series and require that uj=O for all j 3 p ,  
where p is the smallest positive integer value which guarantees a non-constant solution 
U to the PDE. The method then boils down :o solving a small system of PDES which is 
particularly simple when travelling waves exist. The procedure is repeated systemati- 
cally for successive initial values of p until the information is exhausted. A further 
paper which exemplifies this technique is in preparation. 
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